2019年莆田市初中毕业班质量检查试卷

数学

(满分: 150分; 考试时间: 120分钟)

注意:本试卷分为"试题"和"答题卡"两部分,答题时请按答题卡中的"注意事 项"要求认真作答,答案填涂或写在答题卡上的相应位置。

- 一、选择题: 本大题共 10 小题, 每小题 4 分, 共 40 分, 在每小题给出的四个选项中, 只 有一项是符合题目要求的.
- 1. 下列四个数中. 最大的数是

A. -2

B. -1

C. 0

D. | -3 |

2. 下列几何体中, 俯视图为三角形的是

- 3. 下列式子中,可以表示为 2-3的是
 - A. $2^2 \div 2^5$
- B. $2^5 \div 2^2$
- C. $2^2 \times 2^5$
- D. $(-2) \times (-2) \times (-2)$
- 4. 将一把直尺和一块含 30° 的直角三角板 ABC 按如图所示的位置放置,若 $\angle CDE = 40^{\circ}$,

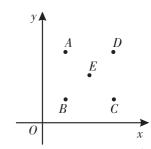
则 ∠BAF 的大小为

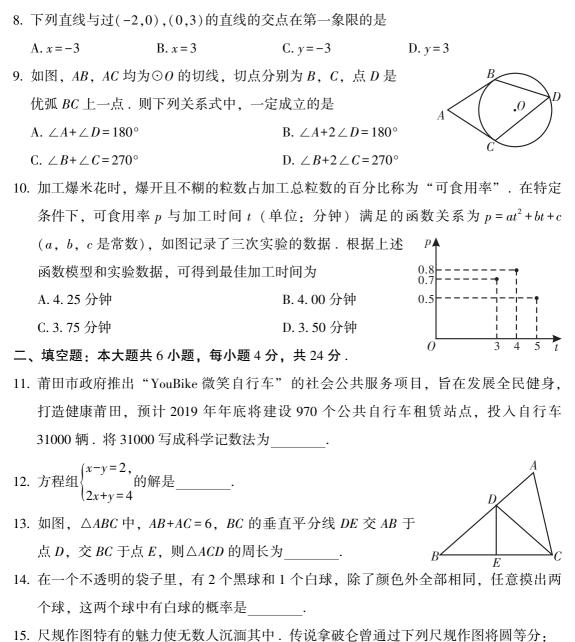
- A. 10°
- B. 15°
- C. 20°
- D. 25°

B. $\sqrt{8}$

- C. $2\sqrt{3}$
- D. $\sqrt{4} + \sqrt{5}$
- 6. 点 E(m, n) 在平面直角坐标系中的位置如图所示, 则坐标 (m+1, n-1) 对应的点可能是
 - A. A 点
- B. B 点
- C. C 点
- D. D 点

- A. 平均数变小, 中位数变小
- B. 平均数变小, 中位数变大
- C. 平均数变大, 中位数变小 D. 平均数变大, 中位数变大





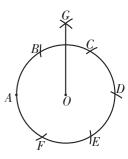
(2) (4 x b / 7 x b | 10 x a a b | 10 x b | 10 x

①将半径为r的 $\odot O$ 六等分,依次得到A, B, C, D, E, F 六个分点;

②分别以点 A, D 为圆心, AC 长为半径画弧, 两弧相交于点 G;

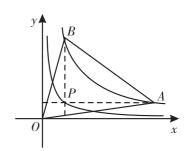
③连接 OG, 以 OG 长为半径,从点 A 开始,在圆周上依次截取,

刚好将圆等分. 顺次连接这些等分点构成的多边形面积为



- 16. 如图, 点 P 为函数 $y = \frac{2}{x}$ (x>0) 图象上一点, 过点 P 作
 - x 轴、y 轴的平行线,分别与函数 $y = \frac{10}{x}$ (x > 0) 的图象

交于点 $A \setminus B$,则 $\triangle AOB$ 的面积为_____



- 三、解答题: 本大题共 9 小题, 共 86 分. 解答应写出必要的文字说明、证明过程、正确作图或演算步骤.
- 17. (本小题满分 8 分)计算: π⁰-³√8+cos60°.
- 18. (本小题满分8分)
 - 求证: 角的平分线上的点到角的两边的距离相等.
- 19. (本小题满分8分)

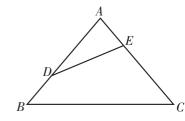
化简求值:
$$\left(\frac{1-2m}{m}+1\right) \div \frac{1-m^2}{m}$$
, 其中 $m=2$.

20. (本小题满分8分)

如图, $\triangle ABC$ 中, AB=AC, $\angle A=80^{\circ}$, 点 D, E 分别在边 AB, AC 上,

 $\coprod DA = DE = CE.$

- (1) 求作点 F,使得四边形 BDEF 为平行四边形; (要求:尺规作图,保留痕迹,不写作法)
- (2) 连接 *CF*,写出图中经过旋转可完全重合的两个 三角形,并指出旋转中心和旋转角.



21. (本小题满分8分)

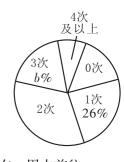
我市"木兰溪左岸绿道"工程已全部建成并投入使用,10公里的河堤便道铺满了彩色的透水沥青,堤岸旁的各类花草争奇斗艳,与木兰溪河滩上的特色花草相映成趣,吸引着众多市民在此休闲锻炼、散步观光.某小区随机调查了部分居民在一周内前往"木兰溪左岸绿道"锻炼的次数,并制成如图不完整的统计图表.

居民前往"木兰溪左岸绿道"锻炼的次数统计表

锻炼次数	0次	1次	2 次	3 次	4 次及以上
人数	7	13	a	10	3

请你根据统计图表中的信息,解答下列问题:

- (1) *a*=______, *b*=______;
- (2) 请计算扇形统计图中"3次"所对应扇形的圆心角的度数;
- (3) 若该小区共有 2000 名居民,根据调查结果,估计该小区居民在一周内前往 "木兰溪左岸绿道"锻炼"4次及以上"的人数.

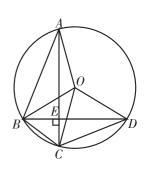


数学试题 第 3 页 (共 5 页)

22. (本小题满分10分)

如图, 在 $\odot O$ 中, 弦 $AC \perp BD$ 于点 E, 连接 AB, CD, BC.

- (1) 求证: ∠*AOB*+∠*COD*=180°;
- (2) 若AB=8, CD=6, 求 $\odot O$ 的直径.



23. (本小题满分10分)

直觉的误差:有一张 8cm×8cm 的正方形纸片,面积是 64cm². 把这些纸片按图 1 所示剪开成四小块,其中两块是三角形,另外两块是梯形. 把剪出的 4 个小块按图 2 所示重新拼合,这样就得到了一个 13cm×5cm 的长方形,面积是 65cm²,面积多了 1 cm². 这是为什么?

小明给出如下证明: 如图 2, 可知, $\tan \angle CEF = \frac{8}{3}$, $\tan \angle EAB = \frac{5}{2}$,

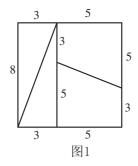
 \therefore tan $\angle CEF > \tan \angle EAB$, $\therefore \angle CEF > \angle EAB$,

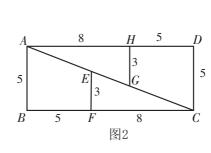
:: EF//AB, $:: \angle EAB + \angle AEF = 180^{\circ}$, $:: \angle CEF + \angle AEF > 180^{\circ}$,

因此 $A \setminus E \setminus C$ 三点不共线 . 同理 $A \setminus G \setminus C$ 三点不共线 ,

所以拼合的长方形内部有空隙,故面积多了1cm2.

- (1) 小红给出的证明思路为:以 B 为原点,BC 所在的直线为 x 轴,建立平面直角坐标系,证明三点不共线.请你帮小红完成她的证明;
- (2) 将 13cm×13cm 的正方形按上述方法剪开拼合,是否可以拼合成一个长方形,但面积少了 1cm²?如果能,求出剪开的三角形的短边长;如果不能,说明理由.

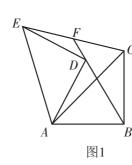


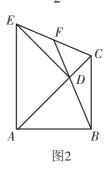


24. (本小题满分12分)

如图 1,在 Rt $\triangle ABC$ 中, $\angle ABC = 90^{\circ}$,AB = BC,将 $\triangle ABC$ 绕点 A 逆时针旋转,得到 $\triangle ADE$,旋转角为 $\alpha(0^{\circ} < \alpha < 90^{\circ})$,连接 BD 交 CE 于点 F.

- (1) 如图 2, 当 α=45°时, 求证: CF=EF;
- (2) 在旋转过程中,
 - ①问(1)中的结论是否仍然成立?证明你的结论;
 - ②连接 CD, 当 $\triangle CDF$ 为等腰直角三角形时,求 $\tan \frac{\alpha}{2}$ 的值.





25. (本小题满分14分)

函数 $y_1 = kx^2 + ax + a$ 的图象与 x 轴交于点 A, B (点 A 在点 B 的左侧),函数 $y_2 = kx^2 + bx + b$ 的图象与 x 轴交于点 C, D (点 C 在点 D 的左侧),其中 $k \neq 0$, $a \neq b$.

- (1) 求证:函数 y_1 与 y_2 的图象交点落在一条定直线上;
- (2) 若 AB = CD, 求 a, b 和 k 应满足的关系式;
- (3) 是否存在函数 y_1 和 y_2 ,使得 B, C 为线段 AD 的三等分点?若存在,求 $\frac{a}{b}$ 的值;若不存在,说明理由.

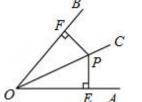
本页无试题,可当草稿用

2019年莆田市初中毕业班质量检查试卷

数学参考答案及评分标准

说明:

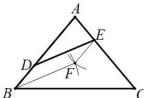
- (一) 考生的解法与"参考答案"不同时,可参考"答案的评分标准"的精神进行评分.
- (二) 如果解答的某一步计算出现错误,这一错误没有改变后续部分的考察目的,可酌情给分,但原则上不超过后面应得分数的二分之一,如果属严重的概念性错误,就不给分.
 - (三) 以下解答各行右端所注分数表示正确做完该步骤应得的累计分数.
 - (四) 评分的最小单位 1 分, 得分和扣分都不能出现小数点.
- 一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. D 2. C 3. A 4. A 5. D 6. C 7. A 8. B 9. B 10. C
- 二、填空题:本大题共6小题,每小题4分,共24分.
- 11. 3.1×10^4 12. $\begin{cases} x = 2 \\ y = 0 \end{cases}$ 13. 6 14. $\frac{2}{3}$ 15. $2r^2$ 16. 24
- 三、解答题: 本大题共 9 小题, 共 86 分. 解答应写出必要的文字说明、证明过程、正确作图或演算步骤.



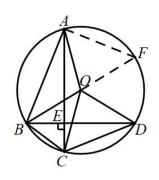
证明: *∵OC* 是 ∠ *AOB* 的平分线,

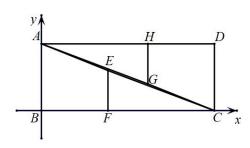
- $\therefore \angle POE = \angle POF$
- $:PE \perp OA, PF \perp OB,$

- $\therefore \triangle POE \cong \triangle POF$,
- ∴PE=PF.8 分



B F C
4分
如图,点 F 为所求作的点5分
(2)△ADE 和△FCE; 旋转中心为点 E, 旋转角为 100°
21. 解: (1)17, 20;
(2)扇形统计图中"3 次"所对应扇形的圆心角的度数为 360°×20%=72°;
(3)估计该小区居民在一周内前往"木兰溪左岸绿道"锻炼"4 次及以上"的人数为 $2000 \times \frac{3}{50}$ =120 人8 分
22. (1)证明: <i>∵AC</i> ⊥ <i>BD</i> , <i>∴∠BEC</i> =90°, <i>∴∠CBD</i> +∠ <i>BCA</i> =90°,
$\therefore \angle AOB = 2 \angle BCA, \ \angle COD = 2 \angle CBD,$
∴ ∠AOB+∠COD=2(∠CBD+∠BCA)=180°;
(2)解:如图,延长 BO 交⊙O 于点 F,连接 AF
则 $\angle AOB+\angle AOF=180^{\circ}$,
又由(1)得: $\angle AOB + \angle COD = 180^{\circ}$,
$\therefore \angle AOF = \angle COD$,
∴ <i>AF=CD</i> =6,
$\therefore BF$ 为 $\odot O$ 的直径,
$\therefore \angle BAF = 90^{\circ}$,在Rt $\triangle ABF$ 中, $BF = \sqrt{6^2 + 8^2} = 10$,
∴⊙O 的直径为 1010 分



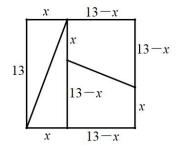


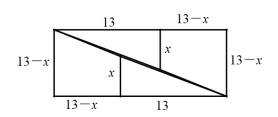
当 x=5 时, $y=-\frac{5}{13}\times 5+5=\frac{40}{13}\neq 3$,故点 E 不在直线 AC 上,

因此 A、E、C三点不共线.

由于 $AE+EC \neq AC$, 故点 E 不在 AC 上,

因此 A、E、C三点不共线.





24. 证明: (1)由旋转 45°, 可知: ∠ADE=∠ABC=90°, ∠EAD=∠CAB=45°, AE=AC, AD=AB,

∴ $\triangle CAE \Rightarrow$, $\angle ACE = \angle AEC = 67.5^{\circ}$,

 $\therefore \angle FDC = \angle ADB = 67.5^{\circ}, \quad \therefore \angle FDC = \angle DCF,$

在 Rt△EDC 中, ∠CED=∠EDF=22.5°,

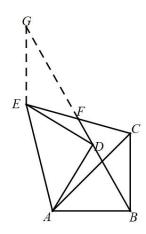
 $\therefore EF = DF$,

∴ *EF=CF*; 3 分

 $\therefore AD = AB$, $\therefore \angle ADB = \angle ABD$,

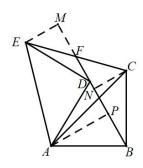
 $\therefore \angle EDG + \angle ADB = \angle CBF + \angle ABD = 90^{\circ}, \therefore \angle EDG = \angle CBF,$

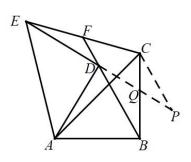
 $\therefore \angle EFG = \angle CFB$, $\therefore \triangle FEG \cong \triangle FCB$, $\therefore EF = CF$:



法二: 分别过点 A, C, E, 作 $AP \perp BF$ 于点 P, $CN \perp BF$ 于点 N, $EM \perp BF$ 交 BF 延长线于点 M.4 分证 $\triangle EMD \cong \triangle DPA$, 得 EM = PD,

证△APB≌BNC, 得 CN=BP,





(3)过点 A 作 $AP \perp BD$ 于点 P.

$$\therefore AB = AD, \quad \therefore \angle PAB = \frac{1}{2} \angle DAB = \frac{\alpha}{2},$$

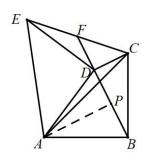
 $\therefore \angle PAB + \angle PBA = \angle CBD + \angle PBA = 90^{\circ}, \quad \therefore \angle CBD = \angle PAB = \frac{\alpha}{2}$

$$\therefore \frac{AE}{AD} = \frac{AC}{AB} = \sqrt{2} , \quad \angle EAC = \angle DAB, \quad \therefore \triangle AEC = \triangle ADB, \quad \therefore \frac{CE}{BD} = \frac{AE}{AD} = \sqrt{2} ,$$

①当 $\angle CDF$ =90°时,如图, $\triangle CDF$ 为等腰直角三角形,则 CF= $\sqrt{2}$ DF,

$$\therefore EF = CF, \quad \therefore CF = \frac{\sqrt{2}}{2}BD, \quad \therefore DF = \frac{1}{2}BD,$$

$$: CD = DF, : CD = \frac{1}{2}BD, : \tan \frac{\alpha}{2} = \tan \angle CBD = \frac{CD}{BD} = \frac{1}{2};$$
 11 分



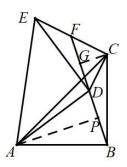
②当 $\angle FCD$ =90°时,如图, $\triangle CDF$ 为等腰直角三角形,则 CF= $\frac{\sqrt{2}}{2}$ DF,过点 C 作 $CG \bot DF$ 于点 G.

$$:: EF = CF, :: CF = \frac{\sqrt{2}}{2} BD, :: DF = BD,$$

$$:CG \perp DF$$
, $:CG = \frac{1}{2}DF$, $:CG = \frac{1}{3}BG$,

$$\therefore \tan \frac{\alpha}{2} = \tan \angle CBG = \frac{CG}{BG} = \frac{1}{3}.$$

综上所述: $\tan \frac{\alpha}{2} = \frac{1}{2}$ 或 $\frac{1}{3}$.



25. (1)联立
$$\begin{cases} y = kx^2 + ax + a \\ y = kx^2 + bx + b \end{cases}$$
 1 分

得 $kx^2 + ax + a = kx^2 + bx + b$.

整理, 得(a-b)x=b-a.

∴函数 y_1 与 y_2 的图象交点坐标为(-1, k).

所以该交点落在直线 x=-1 上. 3 分

(2)分别令 $y_1=0$, $y_2=0$, 得 $kx^2 + ax + a = 0$, $kx^2 + bx + b = 0$.

$$\therefore AB = \frac{\sqrt{a^2 - 4ak}}{|k|}, \quad CD = \frac{\sqrt{b^2 - 4bk}}{|k|}.$$

$$\therefore AB = CD, \quad \therefore \frac{\sqrt{a^2 - 4ak}}{|k|} = \frac{\sqrt{b^2 - 4bk}}{|k|},$$

$$\therefore a^2 - 4ak = b^2 - 4bk > 0, \quad \therefore (a+b)(a-b) = 4k(a-b).$$

$$\therefore a \neq b$$
, $\therefore a + b = 4k$ 且 $ab < 0$.

(3)①当点 C 在点 B 左侧,则 AC=BC=BD, ∴AB=CD,

$$\therefore 2 \cdot \frac{-b - \sqrt{b^2 - 4bk}}{2k} = \frac{-a - \sqrt{a^2 - 4ak}}{2k} + \frac{-a + \sqrt{a^2 - 4ak}}{2k},$$

$$\therefore a-b=\sqrt{b^2-4bk}$$
, $\therefore (a-b)^2=b^2-4bk$, $(a>b)$.

又由(2)得
$$a+b=4k$$
, $\therefore a^2+b^2-ab=0$. 10 分

依题意
$$b \neq 0$$
,得 $\left(\frac{a}{b}\right)^2 - \frac{a}{b} + 1 = 0$, $\triangle = 1 - 4 = -3 < 0$,

$$\therefore x_B - x_A = x_C - x_B, \quad \therefore 2x_B = x_A + x_C,$$

$$\therefore 2 \cdot \frac{-a + \sqrt{a^2 - 4ak}}{2k} = \frac{-a - \sqrt{a^2 - 4ak}}{2k} + \frac{-b - \sqrt{b^2 - 4bk}}{2k},$$

由(2)得
$$\sqrt{a^2-4ak} = \sqrt{b^2-4bk}$$
,则 $4\sqrt{a^2-4ak} = a-b$,

$$\nabla a + b = 4k$$
, : $-16ab = a^2 - 2ab + b^2$, $(a > b)$,

依题意 $b \neq 0$,得: $(\frac{a}{b})^2 + 14 \cdot \frac{a}{b} + 1 = 0$.

解得:
$$\frac{a}{b} = \frac{-14 \pm \sqrt{14^2 - 4}}{2} = -7 \pm 4\sqrt{3}$$
, $(a > b)$.

综上所述,存在这样的函数 y_1 , y_2 , 使得 B, C 为线段 AD 的三等分点,且 $\frac{a}{b} = -7 \pm 4\sqrt{3}$, (a > b).