邵阳市 2017 年初中毕业学业考试参考答案及评分标准

数学

-、选择题(本大题有 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中只 有一项是符合题目要求的)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	С	В	A	В	D	A	D	A	A

二、	填空题(本大题有	8个小题,	每小题 3 分, 共 24 分)	
	11. $m(n+1)^2$	12. 1.24	131 (答案不唯一,	小于零即可)

15. 90°

16. 20° 17. $\frac{3}{4}$

三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答 应写出必要的文字说明、演算步骤或证明过程)

20. 解: (1) 证明: : 四边形 ABCD 是平行四边形,

∴ AD//BC. ∴ ∠DAO=∠OCB. ∠ADO=∠OBC. ········2 分

 $X :: \angle OBC = \angle OCB$, $\therefore \angle DAO = \angle ADO$.

∴ CB=OC, OA=OD. ∴ OB+OD=OA+OC. \square AC=BD.

: 平行四边形 ABCD 是矩形.5 分

(2) AB=AD. (答案不唯一) ······8 分

21.
$$\mathbf{M}$$
: \mathbf{M} :

当x = -1时,原式=-1.

或当 $x=\sqrt{2}$ 时,原式= $\sqrt{2}$ 8 分

解: (1) (815+780+800+785+790+825+805)÷7=800.

将七天的数据按从小到大排列为:780 785 790 800 805 815 825

∴ 所求的平均数是 800, 中位数是 800. ······4 分

邵阳市 2017 年初中毕业学业考试参考答案及评分标准•数学 第1页 共4页

(3) 答案不唯一. 例如: 可以用洗衣服的水留到冲厕所.
采用以上建议,每天大约可以节约用水 100 升,
一个月估计可以节约用水 100×30=3000 升. ······8 分
23. 解: (1) 设每辆小客车的乘客坐位数是 x 个,大客车的乘客坐位数是 y 个,
则 $\left\{ \begin{aligned} y - x &= 17, \\ 6y + 5x &= 300, \end{aligned} \right.$ 解得 $\left\{ \begin{aligned} x &= 18, \\ y &= 35, \end{aligned} \right.$ 4 分
每辆大客车的乘客座位数为35个,
每辆小客车的乘客座位数为 18 个
(2)设租用 a 辆小客车才能将所有参加活动的师生装载完成,则
$18a+35(11-a)$ ≥300+30,解得: $a ≤ 3\frac{4}{17}$,
符合条件的 a 的最大整数为 3.
即租用小客车数量的最大值为 38 分
24. (1) 证明: 在平行四边形 <i>ABCD</i> 中, <i>AD//BC</i> .
$\therefore CB \perp AE, \therefore AD \perp AE. \therefore \angle DAO = 90^{\circ}.$
又 $:DP$ 和圆 O 相切于点 C , $:DC \perp OC$. $:: \angle DCO = 90^{\circ}$
∴在 Rt△ <i>DAO</i> 和 Rt△ <i>DCO</i> 中,
DO=DO, $AO=CO$,
∴Rt△DAO≌Rt△DCO。∴DA=DC3 分
(2) $: CB \perp AE, AE 是 \odot O$ 的直径, $: CF = FB = \frac{1}{2}BC.$
又 :四边形 $ABCD$ 是平行四边形, $\therefore AD=BC$. $\therefore CF=\frac{1}{2}AD$.
$\therefore \frac{PC}{PD} = \frac{CF}{DA} = \frac{1}{2} \cdot \therefore PC = \frac{1}{2}PD \cdot \therefore DC = \frac{1}{2}PD.$
曲(1)知 $DA=DC$, $::DA=\frac{1}{2}PD$.
∴在 Rt△DAP 中,∠P=30°
$\therefore DP//AB$, $\therefore \angle FAB = \angle P = 30^{\circ}$. 又 $\therefore AE$ 为 $\odot O$ 的直径, $\therefore \angle ABE = 90^{\circ}$.
∴ ∠AEB=60°
25. 解: (1) 过点 A 作 MN 的平行线交 BN 的延长线于点 G . $\therefore MN//AG$, $\therefore \angle G = \angle BNM$.
$\mathbb{X} \angle B = \angle B$, $\therefore \triangle ABG \hookrightarrow \triangle MBN$.
$\therefore \frac{BG}{BN} = \frac{AB}{MB} \cdot \therefore \frac{BG}{BN} - 1 = \frac{AB}{MB} - 1.$

邵阳市 2017 年初中毕业学业考试参考答案及评分标准•数学 第 2 页 共 4 页

$$\therefore \frac{BG - BN}{BN} = \frac{AB - MB}{MB} , \quad \exists || \frac{NG}{BN} = \frac{AM}{MB}.$$

同理,在 $\triangle ACG$ 和 $\triangle OCN$ 中, $\frac{NG}{CN} = \frac{AO}{CO}$. $\therefore \frac{CO}{AO} = \frac{CN}{NG}$

 $:: O \to AC$ 的中点, :: AO = CO. :: NG = CN.

$$\therefore \frac{CN}{BN} = \frac{NG}{BN} = \frac{AM}{MB} = \frac{1}{3}.$$

(2) 由 (1) 已证:
$$\frac{NG}{BN} = \frac{AM}{MB}$$
, $\frac{CO}{AO} = \frac{CN}{NG}$.

$$\therefore \frac{AM}{MB} \cdot \frac{BN}{NC} \cdot \frac{OC}{AO} = \frac{GN}{BN} \cdot \frac{BN}{NC} \cdot \frac{NC}{GN} = 1.$$

(3) 在 $\triangle ABD$ 中,点 P 是 AD 上一点,过点 P 的直线与 AB, BD 的延长线分别

相交于点 F, C. 由(2)可得, $\frac{AF}{FR} \cdot \frac{BC}{CD} \cdot \frac{DP}{PA} = 1$.

在 $\triangle ACD$ 中,点 P是 AD 上一点,过点 P 的直线与 AC, CD 的延长线分别 相交于点 E, B, 由 (2) 可得, $\frac{AE}{EC} \cdot \frac{CB}{BD} \cdot \frac{DP}{PA} = 1$.

$$\therefore \frac{AF}{FB} \cdot \frac{BC}{CD} \cdot \frac{DP}{PA} = \frac{AE}{EC} \cdot \frac{CB}{BD} \cdot \frac{DP}{PA} .$$

$$\therefore \frac{AE}{EC} = \frac{AF}{FB} \cdot \frac{BC}{CD} \cdot \frac{BD}{CB} = \frac{AF}{FB} \cdot \frac{BD}{CD} = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6} \cdot \dots \times 8 \text{ }$$

26. 解: (1) 依题意可设抛物线为 $y = a\left(x - \frac{1}{2}\right)^2 - \frac{9}{4}$, 将点 M(2, 0)代入可得,

$$a\left(2-\frac{1}{2}\right)^2-\frac{9}{4}=0$$
, 解釋 $a=1$,

(2)
$$\stackrel{\text{def}}{=} y = 0$$
 By, $\left(x - \frac{1}{2}\right)^2 - \frac{9}{4} = 0$,

解得
$$x_1 = -1$$
, $x_2 = 2$, $\therefore A(-1, 0)$.
当 $x = 0$ 时, $y = \left(0 - \frac{1}{2}\right)^2 - \frac{9}{4} = -2$, $\therefore B(0, -2)$.

在 Rt $\triangle OAB$ 中, OA=1, OB=2, $\therefore AB=\sqrt{5}$.

设直线 y = x+1 与 y 轴的交点为点 G,易求 G(0, 1),

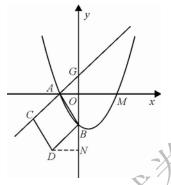
 \therefore Rt $\triangle AOG$ 为等腰直角三角形, $\therefore \angle AGO = 45^{\circ}$

:点 C 在 y=x+1 上且在 x 轴下方,而 k>0,所以 $y=\frac{k}{x}$ 的图象位于第一、三象 限,故点D只能在一、三象限,因此符合条件的菱形只能有如下两种情况:

邵阳市 2017 年初中毕业学业考试参考答案及评分标准•数学 第3页

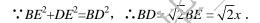
:①此菱形以AB为边且AC也为边,如右图所示,

过点 D 作 $DN \perp v$ 轴于点 N,


在 Rt △BDN 中,

$$\therefore \angle DBN = \angle AGO = 45^{\circ}$$
,

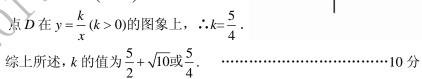
$$\therefore DN = BN = \frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{10}}{2},$$

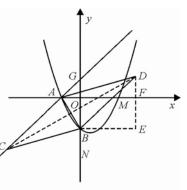

$$\therefore D\left(-\frac{\sqrt{10}}{2}, -\frac{\sqrt{10}}{2} - 2\right).$$

点 D 在 $y = \frac{k}{r} (k > 0)$ 的图象上,

②此菱形以 AB 为对角线,如右图所示,

作 AB 的垂直平分线 CD 交直线 y=x+1 于点 C,交 $y=\frac{k}{x}$ 的图象于点 D. 再分别过点 D, B 作 $DE \perp x$ 轴于点 F, $EE \perp y$ 轴, DE 与 BE 相交于点 E. 在 Rt $\triangle BDE$ 中,同①可证 $\angle AGO = \angle DBO = \angle BDE = 45^{\circ}$, $\therefore BE = DE$. 可设点 D 的坐标为(x, x-2).


∵四边形
$$ABCD$$
 是菱形,∴ $AD=BD=\sqrt{2}x$.


∴在 Rt△ADF 中,AD²=AF²+DF²,

$$(\sqrt{2}x)^2 = (x+1)^2 + (x-2)^2$$
,解得 $x = \frac{5}{2}$.

∴点
$$D$$
的坐标为 $\left(\frac{5}{2}, \frac{1}{2}\right)$.

点
$$D \times y = \frac{k}{x} (k > 0)$$
 的图象上, $: k = \frac{5}{4}$

注: 解答题用其他方法解请参照评分.

邵阳市 2017 年初中毕业学业考试参考答案及评分标准•数学 第4页 共4页