名校调研系列卷·九年级第三次月考试卷 数学(市命题

参考答案

-,1.B 2.A 3.D 4.C 5.C 6.D 7.A 8.D

二、9.6 10. $\frac{2}{3}$ 11.有两个不相等的实数根 12.12 13.30° 14.2

$$=$$
 15. $\mathbf{M}: \sqrt{24} \div \sqrt{3} + (\sqrt{2} - 1)^2 = 2\sqrt{2} + 2 - 2\sqrt{2} + 1 = 3$.

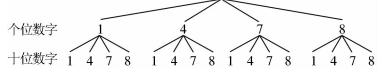
16.
$$\Re : 2x^2 - 3x + 1 = 0, x = \frac{3 \pm \sqrt{1}}{4} = \frac{3 \pm 1}{4}, x_1 = \frac{1}{2}, x_2 = 1.$$

17. 解:设剪成的较短的这段为 xcm,较长的这段就为(40-x)cm. 由题意,得 $(\frac{x}{4})^2$ +

$$(\frac{40-x}{4})^2 = 58$$
,解得 $x_1 = 12$, $x_2 = 28$,当 $x = 12$ 时,较长的为 $40-12 = 28$ (cm),

当 x = 28 时,较长的为 40 - 28 = 12 < 28(舍去).

答:李明应该把铁丝剪成 12cm 和 28cm 的两段.


18.解:画树状图如图.

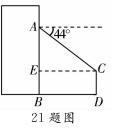
参加颁奖大会刚好是一男生一女生的概率是 $\frac{6}{12} = \frac{1}{2}$.

19. 解:在 Rt△ADB 中,: $\tan A = \frac{BD}{AD}$,: $BD = AD \cdot \tan A = 6 \times \frac{4}{3} = 8$,在 Rt△CDB 中,: $\sin C = \frac{BD}{CD}$,: $\sin C = \frac{8}{12} = \frac{2}{3}$.

20. 解:(1) 画树状图如图.

共有 16 种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88.

(2) 算术平方根大于4 且小于7的结果数为6,所以算术平方根大于4 且小于7的概


率为 $\frac{6}{16} = \frac{3}{8}$.

21. 解:如图,作 $CE \perp AB$ 于点E,则四边形EBDC 为矩形,:CE = BD

= 12 米,在Rt $\triangle AEC$ 中,tan $\angle ACE = \frac{AE}{EC}$,则 $AE = EC \cdot tan \angle ACE$

= $12 \times 0.97 = 11.64$, ∴CD = BE = AB - AE = 8.36 ≈ 8.4(<math>*).

答:路灯 CD 的高度约为 8.4 米.

22. $mathred{H}$: $abla BDF =
abla C =
abla BED, <math>
abla B =
abla B, \therefore \triangle BDF \Leftrightarrow \triangle BED, \therefore \frac{DF}{DE} = \frac{BF}{BD}, \because \frac{BF}{BD}$

$$22.$$
 解: · 之 $BDF = 2$ $C = 2$ BED , 2 $B = 2$ B , . . $\triangle BDF = 3$ $\triangle BED$, . . $\frac{DE}{DE} = \frac{1}{BD}$, . $\frac{DF}{DE} = \frac{2}{3}$, . . $\frac{DF}{DE} = \frac{2}{3}$, . . $\frac{DF}{2}$ $\frac{2}{3}$, . . . $\frac{DF}{2}$ $\frac{2}{3}$, . . .

 $\frac{DF}{AC} = \frac{1}{2}$.

23. 解: 探究: ∵ 四边形
$$ABCD$$
 是矩形, ∴ $\angle ABC = 90^{\circ}$, ∵ $BE \perp AC$, ∴ $\angle AEB = \angle ABC = 90^{\circ}$, ∵ $\angle BAE = \angle BAC$, ∴ $\triangle ABE \bowtie \triangle ACB$, ∴ $\frac{AE}{BE} = \frac{AB}{BC}$

$$\angle ABC = 90^{\circ}$$
, $\because \angle BAE = \angle BAC$, $\therefore \triangle ABE \Leftrightarrow \triangle ACB$, $\therefore \frac{AE}{BE} = \frac{A}{E}$
= $\frac{1}{2}$. 同理 $\frac{BE}{CE} = \frac{AB}{BC} = \frac{1}{2}$, $\therefore \frac{AE}{CE} = \frac{1}{4}$.

应用: $\frac{OF}{AF} = \frac{1}{2}$.

10 5 10 5 (2) 点 Q 到 BC 边的距离是:① 当
$$0 < t < 5$$
 时, $\frac{12}{5}t \cdot \frac{4}{5} = \frac{48}{25}t$,② 当 $5 \le t < 10$ 时, $(24 - \frac{12}{5}t) \cdot \frac{4}{5} = \frac{96}{5} - \frac{48}{25}t$.

(3)
$$ext{ } ext{ } ext{ } 0 < t < 5 ext{ } ext{$$

(4)① 当
$$0 < t < 5$$
 时, $(10-t) \cdot \frac{3}{5} + \frac{1}{2} \times 12 = \frac{12}{5}t, t = 4.$

② 当
$$5 \leqslant t < 10$$
 时, $(10-t) \cdot \frac{3}{5} + \frac{1}{2} \times 12 = 24 - \frac{12}{5}t$, $t = \frac{20}{3}$.