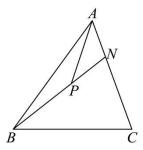
高中数学教师专业能力考核试卷

学校:	姓名	; ;	得分:
	拱 16 小题,每小题 3 <i>9</i> 四个选项中,只有一项		
1. 已知集合 $A = \{x \mid y\}$	$y = \sqrt{2x - 1} , \not $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\$	$x 0 \le x \le 1 \} , \text{III} \ A B =$: ()
A. $\left[0,\frac{1}{2}\right]$	B. $\left[\frac{1}{2},1\right]$	C. [0,1]	D. $[0,+\infty)$
2. 若复数 $z=\frac{2}{1+i}$,	则 $ z-2i =$ ()		
A. $\sqrt{2}$	B. 2	C. $\sqrt{10}$	D. 10
3. 数学是研究()	的一门科学。		
A. 数量关系与空间开	形式	B. 数字与图形	
C. 计算与推理		D. 统计与概率	
4. 从两名男同学和四	9名女同学中随机选出3	三人参加数学竞赛,则忖	合好选出一名男同学和两名女同学的概
率为 ()			
A. $\frac{2}{5}$	B. $\frac{2}{3}$	C. $\frac{3}{5}$	D. $\frac{1}{2}$
5. 第九届亚冬会在哈	6尔滨举行,参加自由式	滑雪女子大跳台决赛的	的六位选手的得分如下: 119.50, 134.75
154.75, 159.50, 162	.75, 175.50, 则该组数	据的第 40 百分位数为	()
A. 134.75	B. 144.75	C. 154.75	D. 159.50
6. 己知随机变量 X 用	服从正态分布 $N(3,\sigma^2)$,	且 $P(X>2)=0.7$,则	P(3 < X < 4) = ()
A. 0.1	B. 0.2	C. 0.3	D. 0.4
7. 曲线 $y = f(x) = \ln x$	$(x^2 + x - 1)$ 在点 $(1, f(1))$	处的切线方程为()	
A. $y = 3x - 3$	B. $y = 2x - 2$	C. $y = x - 1$	D. $y = 0$
8. 双曲线 $y^2 - \frac{x^2}{b^2} = 1$	的离心率为√5,则该对	双曲线的焦点到它的渐过	近线距离为()
A. 1	B. 2	C. $\sqrt{5}$	D. 3
9. 等差数列的前 n 项	页和为 S_n ,若 $S_2 = 5$, S	$S_5 = 10$, $MS_8 = ()$	
A. 8	B. 10	C. 12	D. 15

- 10. 记 VABC 的内角 A,B,C 的对边分别为 a,b,c ,面积为 $\sqrt{3},B=60^{\circ},a^2+c^2=3ac$,则 b=()
- A. $4\sqrt{2}$
- B. $2\sqrt{2}$
- C. 8
- D. 2

11. 如图,在VABC中, $AN = \frac{1}{3}NC$, $P \neq BN$ 上的一点,若 $AP = mAB + \frac{1}{6}AC$,则实数m的值为()



- C. $\frac{1}{3}$

12. 将函数 $y = \sin\left(x + \frac{\pi}{3}\right)$ 图象上所有点的横坐标缩短到原来的一半 (纵坐标不变),再将图象向左平移 $\frac{\pi}{4}$ 个 单位,得到的函数的表达式为()

- A. $y = \cos\left(2x + \frac{\pi}{3}\right)$ B. $y = \cos\left(2x + \frac{2\pi}{3}\right)$ C. $y = \sin\left(2x + \frac{7\pi}{12}\right)$ D. $y = \sin\left(\frac{1}{2}x + \frac{11\pi}{24}\right)$

13. 已知f(x)为定义在(-4,4)上的奇函数,若f(x)在[0,4)上单调递减,则满足不等式

 $f(a+1)+f(1-a^2)>0$ 的实数 a 的取值范围是 ()

- A. $(-\sqrt{5},+\infty)$ B. $(-\sqrt{5},2)$ C. $(-\sqrt{5},-1)$ $(2,\sqrt{5})$ D. $(-\sqrt{5},-1)$ $(1,\sqrt{5})$

14. 已知直线 l、m、n 与平面 α 、 β ,下列命题正确的是()

- A. 若 $l \perp n$, $m \perp n$, 则l // m
- B. 若 $l \perp \alpha$, $l / / \beta$, 则 $\alpha \perp \beta$
- C. 若 $l//\alpha$, $l \perp m$, 则 $m \perp \alpha$ D. 若 $\alpha \perp \beta$, α $\beta = m$, $l \perp m$, 则 $l \perp \beta$

15. 已知 $a = \frac{1}{c}$, $b = \frac{\ln 3}{3}$, $c = \frac{\ln 2}{2}$, 则 a, b, c 的大小关系为())

- A. b < c < a B. c < b < a C. c < a < b D. a < c < b

16. 已知三棱锥 S-ABC 底面是边长为 $\sqrt{3}$ 的正三角形, $SA\perp$ 平面 ABC,且 $SA=2\sqrt{3}$,则该三棱锥的外接 球的体积为()

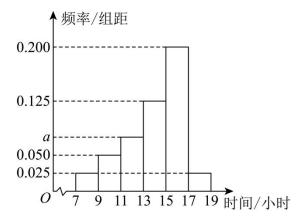
0

- A. $\frac{32\pi}{3}$ B. $4\sqrt{3}\pi$ C. $\sqrt{6}\pi$ D. $\frac{8\pi}{3}$

二、**填空题(**本大题共 4 小题,第小题 4 分,共 16 分)

- 17. 已知 $\alpha \in \left(\frac{\pi}{2}, \pi\right), \sin \alpha = \frac{3}{5}$,则 $\cos \left(\alpha + \frac{\pi}{4}\right) = \underline{\hspace{1cm}}$.
- 18. 在 $\left(2x^3 \frac{1}{x}\right)^6$ 的展开式中, x^2 的系数为______.
- 19. 高中数学学科核心素养包括______, , _____, , 数学建模, 直观想象, 数学运算与数据分析。
- 20. 曲线 $y = x^3 3x$ 与 $y = -(x-1)^2 + a$ 在 $(0,+\infty)$ 上有两个不同的交点,则 a 的取值范围为_____.
- 三、解答题(本大题共6小题,每小题6分,共36分。解答应写出文字说明,证明过程或演算步骤)
- 21. 在 VABC 中,角 A,B,C 所对的边分别为 a,b,c ,若 $b\cos A + a\cos B = -2c\cos C$.
- (1)求 C 的大小;
- (2)若b = 2a,且VABC的面积为 $2\sqrt{3}$,求c.
- 22. 已知数列 $\{a_n\}$ 是公差不为 0 的等差数列,若 $a_1 = 1$,且 a_2 , a_4 , a_8 成等比数列.
- (1)求 $\{a_n\}$ 的通项公式;
- (2)若 $b_n = \frac{1}{a_n \cdot a_{n+1}}$, 求数列 $\{b_n\}$ 的前n项和 S_n ;

23. 为了更好地了解中学生的体育锻炼时间,某校展开了一次调查,从全校学生中随机选取100人,统计了他们一周参加体育锻炼时间(单位:小时),分别位于区间[7,9),[9,11),[11,13),[13,15),[15,17),[17,19],用频率分布直方图表示如下图。假设用频率估计概率,且每个学生参加体育锻炼时间相互独立。

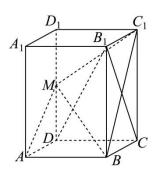


(1)求 a 的值;

(2)估计全校学生一周参加体育锻炼时间的第80百分位数;

(3)从全校学生中随机选取 3 人,记 X 表示这 3 人一周参加体育锻炼时间在区间 [13,15) 内的人数,求 X 的分布列和数学期望 E(X).

24. 长方体 $ABCD - A_1B_1C_1D_1$ 中,M 为棱 DD_1 的中点,AB=1,AD=2, $AA_1=2\sqrt{2}$.



(1)求证: $AM \perp$ 平面 B_1CD ;

(2)求平面 BMC_1 与平面 B_1CD 的夹角的余弦值.

25. 椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右焦点分别为 F_1, F_2 ,上顶点为M(0,1),离心率为 $\frac{\sqrt{2}}{2}$ (1)求椭圆 C 的方程;

(2)过点(-1,-1)的直线交椭圆C于A,B两点,设直线MA,MB的斜率分别为 k_1,k_2 ,证明: k_1 与 k_2 的和为定值.

26. 已知函数
$$f(x) = (a-1)\ln x + x + \frac{a}{x}(a \in \mathbb{R})$$
.

- (1)若a=-2, 求函数f(x)的单调区间和极值;
- (2)若存在 $x \in (1,+\infty)$,使得 $f(x) \le \frac{a}{x}$ 成立,求 a 的取值范围.

教师专业能力考核试题(高中数学)参考答案

题号	1	2	3	4	5	6	7	8	9	10
答案	В	С	A	С	С	В	A	В	С	В
题号	11	12	13	14	15	16				
答案	С	A	С	В	В	A				

1. B

【分析】求得集合A,再用交集运算求解.

【详解】由
$$2x-1 \ge 0$$
解得, $x \ge \frac{1}{2}$,所以 $A = \left\{ x | x \ge \frac{1}{2} \right\}$,

所以
$$A$$
 $B = \left[\frac{1}{2}, 1\right]$,

故选: B.

2. C

【分析】根据复数的除法运算及模长计算公式即可求解.

【详解】
$$z = \frac{2}{1+i} = \frac{2(1-i)}{2} = 1-i$$
,

$$||J||z-2i| = |1-3i| = \sqrt{1^2 + (-3)^2} = \sqrt{10},$$

故选: C.

3. A

【分析】数学是研究数量关系与空间形式的一门科学

故选: A

4. C

【分析】根据古典概型的概率公式可得解.

【详解】六名同学选3名同学,有 $C_6^3 = 20$ 种选法,

其中恰好选出一名男同学和两名女同学有 $C_2^1 \cdot C_4^2 = 2 \times 6 = 12$ 种选法,

所以
$$P = \frac{12}{20} = \frac{3}{5}$$
,

故选: C.

5. C

【分析】根据百分位数的定义求解.

【详解】六位选手得分由小到大排列如下:

119.50, 134.75, 154.75, 159.50, 162.75, 175.50,

因为 $6 \times 40\% = 2.4$,

所以该组数据的第 40 百分位数为第三个数 154.75.

故选: C

6. B

【分析】利用正态分布的对称性即可得到结果.

【详解】因为随机变量X服从正态分布 $N(3,\sigma^2)$,所以正态分布的对称轴为x=3,

所以
$$P(3 < X < 4) = P(2 < X < 3) = P(X > 2) - 0.5 = 0.2$$

故选: B

7. A

【分析】先求出导函数得出切线斜率,再应用点斜式写出直线方程.

【详解】
$$f(1) = 0, f'(x) = \frac{2x+1}{x^2+x-1}, f'(1) = 3$$
, 所求切线方程为 $y = 3x-3$.

故选: A.

8. B

【分析】根据离心率求出 $c=\sqrt{5}$,b=2,得到焦点坐标和渐近线方程,利用点到直线距离公式求出答案.

【详解】
$$y^2 - \frac{x^2}{b^2} = 1$$
中, $a = 1$, 故 $\frac{c}{a} = c = \sqrt{5}$,

故
$$b^2 = c^2 - a^2 = 5 - 1 = 4$$
,故 $b = 2$,

所以双曲线的焦点坐标为 $\left(0,\pm\sqrt{5}\right)$, 渐近线方程为 $y=\pm\frac{1}{2}x$,

所以该双曲线的焦点到它的渐近线距离为 $\frac{\left|\pm\sqrt{5}\right|}{\sqrt{1+\frac{1}{4}}}=2$

故选: B

9. C

【分析】由等差数列前项和公式列方程组求得 a, 和公差 d 后可得结果.

【详解】设等差数列首项 a_1 和公差d,

 $\pm S_2 = 5$, $S_5 = 10$,

则
$$\begin{cases} 2a_1 + d = 5 \\ 5a_1 + 10d = 10 \end{cases}$$
,解得 $a_1 = \frac{8}{3}$, $d = -\frac{1}{3}$

$$\text{III } S_8 = 8 \times \frac{8}{3} + \frac{8 \times 7}{2} \times \left(-\frac{1}{3} \right) = 12.$$

故选: C.

10. B

【分析】由三角形面积公式可得ac = 4,再结合余弦定理即可得解.

【详解】由题意,
$$S_{\triangle ABC} = \frac{1}{2} ac \sin B = \frac{\sqrt{3}}{4} ac = \sqrt{3}$$
,

所以 ac = 4, $a^2 + c^2 = 12$,

所以
$$b^2 = a^2 + c^2 - 2ac\cos B = 12 - 2 \times 4 \times \frac{1}{2} = 8$$
,

解得 $b = 2\sqrt{2}$ 或 $b = -2\sqrt{2}$ (舍去).

故选: B.

11. C

【分析】根据条件得到 $AP = mAB + \frac{2}{3}AN$,由共线定理的推论得到方程,求出答案.

【详解】
$$AN = \frac{1}{3}NC$$
,故 $AC = 4AN$,

$$AP = mAB + \frac{1}{6}AC$$
, $BAP = mAB + \frac{2}{3}AN$,

因为 B, P, N 三点共线,故 $m + \frac{2}{3} = 1$,解得 $m = \frac{1}{3}$.

故选: C

12. A

【分析】利用三角函数图象变换可得出平移后所得函数的解析式.

【详解】将函数 $y = \sin\left(x + \frac{\pi}{3}\right)$ 图象上所有点的横坐标缩短到原来的一半(纵坐标不变),

可得到函数 $y = \sin\left(2x + \frac{\pi}{3}\right)$ 的图象,

再将所得函数的图象向左平移 $\frac{\pi}{4}$ 个单位,

可得到函数
$$y = \sin \left[2\left(x + \frac{\pi}{4}\right) + \frac{\pi}{3} \right] = \sin \left(2x + \frac{\pi}{2} + \frac{\pi}{3}\right) = \cos \left(2x + \frac{\pi}{3}\right)$$
 的图象.

故选: A.

13. C

【分析】根据奇函数的性质得 f(x) 在 (-4,4) 上单调递减,再根据奇函数性质将

$$f(a+1)+f(1-a^2)>0$$
 化为 $f(a+1)>f(a^2-1)$,结合定义域利用单调性得
$$\begin{cases} -4 < a+1 < 4 \\ -4 < a^2-1 < 4 \end{cases}$$
, $a+1 < a^2-1$

解不等式组即可解答.

【详解】因为f(x)是奇函数,则 $f(a+1)+f(1-a^2)>0$ 可化为

$$f(a+1) > -f(1-a^2) = f(a^2-1)$$
.

又 f(x) 在 [0,4) 上单调递减且 f(x) 是定义在 (-4,4) 上的奇函数,所以 f(x) 在 (-4,4) 上单调递减.

则
$$\begin{cases} -4 < a+1 < 4 \\ -4 < a^2 -1 < 4 \end{cases}, \quad 解得 -\sqrt{5} < a < -1 或 2 < a < \sqrt{5} ,$$

$$a+1 < a^2 -1$$

即实数 a 的取值范围是 $\left(-\sqrt{5},-1\right)\cup\left(2,\sqrt{5}\right)$.

故选: C

14. B

【分析】根据线面平行,线面垂直,线面垂直,面面垂直相关判定性质逐个判定即可.

【详解】对于 A 选项: 若 $l \perp n$, $m \perp n$, 则 l = m 可能平行、相交或异面. 像墙角三条线, 所以不能得出平行,A 错.

对于 B 选项: $l//\beta$,则 β 内有直线 a 与 l 平行,又 l \bot α ,所以 a \bot α , a 在 β 内,能推出 α \bot β , B 对.

对于 C 选项: $l//\alpha$ 且 $l\perp m$ 时,m 与 α 位置不确定,m 可在 α 内等,不能得出 $m\perp\alpha$,C 错。对于 D 选项: $\alpha\perp\beta$,交线为m, $l\perp m$,则 l 可以在 β 内,可以与 β 平行,或与 β 相交但不垂直,位置不定,D 错。

故选: B.

15. B

【分析】构造函数 $f(x) = \frac{\ln x}{x}(x > 0)$,求导可得其单调性,即可得到 a 最大,然后由作差法比较 b,c 的大小关系,即可得到结果.

【详解】设
$$f(x) = \frac{\ln x}{x}(x > 0)$$
,则 $f'(x) = \frac{1 - \ln x}{x^2}$,

当 $x \in (0,e)$ 时,f'(x) > 0,则函数f(x)单调递增,

当x∈(e,+∞)时, f'(x)<0, 则函数f(x)单调递减,

则x=e时,f(x)有极大值,即最大值,

$$\mathbb{Z} a = \frac{1}{e} = \frac{\ln e}{e} = f(e), \quad b = \frac{\ln 3}{3} = f(3), \quad c = \frac{\ln 2}{2} = f(2),$$

所以f(2) < f(e), f(3) < f(e),

$$\mathbb{E} f(2) - f(3) = \frac{\ln 2}{2} - \frac{\ln 3}{3} = \frac{3 \ln 2 - 2 \ln 3}{6} = \frac{\ln 8 - \ln 9}{6} < 0,$$

所以f(2) < f(3),

综上可得, f(2) < f(3) < f(e), 即 c < b < a.

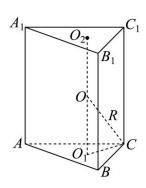
故选: B

16. A

【分析】将三棱锥补形成正三棱柱,利用它们有相同的外接球,结合正三棱柱的结构特征求出球半径即可.

【详解】如图,将三棱锥S-ABC补成三棱柱 $ABC-A_1B_1C_1$,点 $S 与 A_1$ 重合,

正三棱柱 $ABC - A_1B_1C_1$ 外接球也为三棱锥 S - ABC 的外接球, 令球心为O, 半径为R,



记VABC和 $\triangle A_1B_1C_1$ 外接圆的圆心分别为 O_1 和 O_2 ,其半径为r,

由正弦定理得:
$$r = \frac{\sqrt{3}}{2\sin 60^{\circ}} = 1$$
, 而 O 为 O_1O_2 的中点,则 $R = \sqrt{1^2 + \left(\sqrt{3}\right)^2} = 2$,

所以该三棱锥的外接球的体积为 $V = \frac{4}{3}\pi R^3 = \frac{32\pi}{3}$.

故选: A

17.
$$-\frac{7\sqrt{2}}{10}/-\frac{7}{10}\sqrt{2}$$

【分析】由同角三角函数的平方关系求得 $\cos \alpha$,再根据两角和的余弦公式即可求解.

【详解】因为
$$\alpha \in \left(\frac{\pi}{2}, \pi\right)$$
, $\sin \alpha = \frac{3}{5}$,所以 $\cos \alpha = -\sqrt{1-\sin^2 \alpha} = -\frac{4}{5}$,

$$\mathbb{I} \cos\left(\alpha + \frac{\pi}{4}\right) = \cos\alpha \cos\frac{\pi}{4} - \sin\alpha \sin\frac{\pi}{4} = \frac{4}{5} \times \frac{\sqrt{2}}{2} \frac{3}{5} \times \frac{\sqrt{2}}{2} = \frac{7\sqrt{2}}{10},$$

故答案为:
$$-\frac{7\sqrt{2}}{10}$$
.

18. 60

【分析】由二项式展开式的通项公式写出其通项公式 $T_{k+1} = (-1)^k \times 2^{6-k} \times C_6^k \times x^{18-4k}$,令 18-4k=2 确定 k 的值,然后计算 x^2 项的系数即可.

【详解】展开式的通项公式
$$T_{k+1} = C_6^k \left(2x^3\right)^{6-k} \left(-\frac{1}{x}\right)^k = \left(-1\right)^k \times 2^{6-k} \times C_6^k \times x^{18-4k}$$
,

令 18-4k=2 可得, k=4 ,

则 x^2 项的系数为 $(-1)^4 \times 2^{6-4} \times C_6^4 = 4 \times 15 = 60$.

故答案为: 60.

19. 数学抽象,逻辑推理

分析: 高中数学学科核心素养包括数学抽象,逻辑推理, 数学建模,直观想象,数学运算与数据分析

20. (-2,1)

【分析】将函数转化为方程,令 $x^3-3x=-(x-1)^2+a$,分离参数a,构造新函数 $g(x)=x^3+x^2-5x+1,$ 结合导数求得g(x)单调区间,画出大致图形数形结合即可求解.

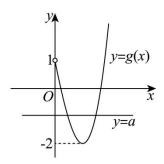
则
$$g'(x) = 3x^2 + 2x - 5 = (3x + 5)(x - 1)$$
, $\Leftrightarrow g'(x) = 0(x > 0)$ 得 $x = 1$,

当 $x \in (0,1)$ 时,g'(x) < 0,g(x)单调递减,

当
$$x \in (1,+\infty)$$
时, $g'(x) > 0$, $g(x)$ 单调递增, $g(0) = 1,g(1) = -2$,

因为曲线 $y = x^3 - 3x$ 与 $y = -(x-1)^2 + a$ 在 $(0,+\infty)$ 上有两个不同的交点,

所以等价于y = a 与 g(x)有两个交点, 所以 $a \in (-2,1)$.



故答案为: (-2,1)

21.
$$(1)\frac{2\pi}{3}$$

 $(2) 2\sqrt{7}$

【分析】(1) 由已知及正弦定理可得: $\sin B \cos A + \sin A \cos B = -2 \sin C \cos C$,化简可得 $\cos C = -\frac{1}{2}$,从而可求得 C 的值;

(2) 由b=2a及VABC的面积为 $2\sqrt{3}$ 可求得a,b,从而由余弦定理可解得c的值.

【详解】(1) 因为 $b\cos A + a\cos B = -2c\cos C$

所以 $\sin B\cos A + \sin A\cos B = -2\sin C\cos C$

$$\therefore \sin(B+A) = -2\sin C\cos C.$$

又A,B,C为三角形内角,

$$\therefore B + A = \pi - C,$$

$$\therefore \sin C = -2\sin C\cos C.$$

$$: C \in (0,\pi), : \sin C > 0.$$

$$\therefore \cos C = -\frac{1}{2} , \quad \therefore C = \frac{2}{3}\pi .$$

(2) :VABC 的面积为 $2\sqrt{3}$,

$$\therefore \frac{1}{2}ab\sin C = 2\sqrt{3} ,$$

$$\therefore ab = \frac{4\sqrt{3}}{\sin C}.$$

曲 (1)
$$Ω C = \frac{2π}{3}$$
, $∴ sin C = \frac{\sqrt{3}}{2}$,

$$\therefore ab = 8$$
, $\mathbb{Z} : b = 2a$,

$$\therefore a = 2$$
, $b = 4$,

$$\therefore c^2 = a^2 + b^2 - 2ab\cos C = 2^2 + 4^2 - 2 \times 2 \times 4 \times \left(\frac{1}{2}\right) = 28,$$

$$\therefore c = 2\sqrt{7}$$
.

22. (1)
$$a_n = n$$

$$(2)\frac{n}{n+1}$$
.

【分析】(1) 设等差数列 $\{a_n\}$ 的公差为 $d(d \neq 0)$,根据等比中项的性质得到方程,解得d = 1,即可求出通项公式;

(2) 由 (1) 可得 $\frac{1}{a_n \cdot a_{n+1}} = \frac{1}{n} - \frac{1}{n+1}$, 再利用裂项相消法求和即可.

【详解】(1) 设等差数列 $\{a_n\}$ 的公差为 $d(d \neq 0)$,

因为 a_2 , a_4 , a_8 成等比数列,

所以
$$(a_4)^2 = a_2 \cdot a_8$$
.

$$\mathbb{P}(a_1 + 3d)^2 = (a_1 + d) \cdot (a_1 + 7d),$$

所以
$$a_n = a_1 + (n-1)d = n$$
.

(2) 由 (1) 知:
$$b_n = \frac{1}{a_n \cdot a_{n+1}} = \frac{1}{n(n+1)} = \frac{1}{n-1}$$

$$\text{III } S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n+1} \; ,$$

$$\mathbb{E} S_n = 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

23. (1)
$$a = 0.075$$

(2)16.25

(3)分布列见解析, $\frac{3}{4}$

【分析】(1)利用频率分布直方图各个小矩形的面积和为1,即可求解;

(2) 利用百分位数的求法,即可求解;

(3) 根据条件可得 $X \sim B\left(3, \frac{1}{4}\right)$,再利用二项分布的概率公式求出X可能取值的概率,即可求出分布列,再利用期望的计算公式,即可求解.

【详解】(1) 由 $(0.025+0.050+a+0.125+0.200+0.025)\times 2=1$,解得 a=0.075.

(2) 因为 $(0.025+0.050+0.075+0.125)\times 2=0.5$, $0.200\times 2=0.400$,

所以第80百分位数为15+ $\frac{0.25}{0.4}$ ×2=16.25.

(3) 从全校学生中随机选取1人,则此人一周参加课后活动的时间在区间[13,15]的概率为 $0.125 \times 2 = 0.25$,

又 X 的可能取值为 0,1,2,3,由题意可得 $X \sim B\left(3,\frac{1}{4}\right)$,

$$\mathbb{M} P(X=0) = C_3^0 \times \left(\frac{3}{4}\right)^3 \times \left(\frac{1}{4}\right)^0 = \frac{27}{64}, P(X=1) = C_3^1 \times \left(\frac{3}{4}\right)^2 \times \left(\frac{1}{4}\right)^1 = \frac{27}{64},$$

$$P(X=2) = C_3^2 \times \left(\frac{3}{4}\right)^1 \times \left(\frac{1}{4}\right)^2 = \frac{9}{64}, P(X=3) = C_3^3 \times \left(\frac{3}{4}\right)^0 \times \left(\frac{1}{4}\right)^3 = \frac{1}{64},$$

则X的分布列为:

X	0	1	2	3
P	<u>27</u> 64	<u>27</u> 64	9 64	$\frac{1}{64}$

X的数学期望 $E(X) = 3 \times \frac{1}{4} = \frac{3}{4}$.

24. (1)证明见解析;

$$(2)\frac{\sqrt{15}}{15}$$
.

【分析】(1)连接 DA_1 ,利用三角形相似得 $AM \perp A_1D$,由长方体结构特征及线面垂直的性质得 $CD \perp AM$,最后应用线面垂直的判定证明结论;

(2) 构建合适的空间直角坐标系,应用向量法求面面角的余弦值.

【详解】(1) 连接 DA_1 ,根据长方体的结构特征易知 A_1B_1 //AB //DC ,即 A_1 , B_1 , D , C 四点共面,

所以平面 B_1CD 即为平面 CDA_1B_1 ,

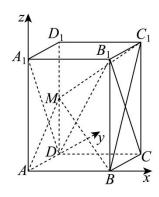
由M为棱 DD_1 的中点,AB=1,AD=2, $AA_1=2\sqrt{2}$,则 $DM=\sqrt{2}$,

所以
$$\frac{DM}{AD} = \frac{AD}{A_1A}$$
 ,且 $\angle A_1AD = \angle ADM = 90^{\circ}$,则 A_1AD ADM ,

所以 $\angle DAM + \angle ADA_1 = 90^\circ$,则 $AM \perp A_1D$,

而 CD 上平面 ADD_1A_1 , $AM \subset$ 平面 ADD_1A_1 , 则 $CD \perp AM$,

由 A,D CD = D 都在平面 ADD_1A_1 内,则 $AM \perp$ 平面 ADD_1A_1 ,即 $AM \perp$ 平面 B_1CD_2 ;



(2) 由题设,可构建如图示的空间直角坐标系 A-xyz,则 $B(1,0,0), C_1(1,2,2\sqrt{2}), M(0,2,\sqrt{2})$,

由(1)知平面 B_1CD 的一个法向量为 $AM = (0,2,\sqrt{2})$,

又 $BC_1 = (0,2,2\sqrt{2})$, $MC_1 = (1,0,\sqrt{2})$, 若 m = (x,y,z) 是平面 BMC_1 的一个法向量,

所以
$$\begin{cases} m \cdot BC_1 = 2y + 2\sqrt{2}z = 0 \\ m \cdot MC_1 = x + \sqrt{2}z = 0 \end{cases}$$
, 取 $z = -1$, 则 $m = (\sqrt{2}, \sqrt{2}, -1)$,

所以
$$\left|\cos m, AM\right| = \left|\frac{m \cdot AM}{|m|} = \frac{\sqrt{2}}{\sqrt{6} \times \sqrt{5}} = \frac{\sqrt{15}}{15}$$
,即所求两个平面夹角的余弦值为 $\frac{\sqrt{15}}{15}$.

25.
$$(1)\frac{x^2}{2} + y^2 = 1$$
;

(2)证明见解析.

【分析】(1) 根据给定条件,求出a,b即可得椭圆C的方程.

(2) 当直线 AB 的斜率存在时,设出其方程并与椭圆方程联立,利用韦达定理,结合斜率 坐标公式计算推理得证,再验证斜率不存在的情况即可.

【详解】(1) 由椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上顶点为M(0,1), 得b = 1,

由椭圆 C 的离心率为 $\frac{\sqrt{2}}{2}$, 得 $\frac{\sqrt{a^2-b^2}}{a} = \frac{\sqrt{2}}{2}$, 解得 $a = \sqrt{2}$,

所以椭圆 C 的方程为: $\frac{x^2}{2} + y^2 = 1$.

(2) 当直线 AB 的斜率存在时,设其方程为 $y = k(x+1)-1, k \neq 2$, $A(x_1, y_1), B(x_2, y_2)$,

由
$$\begin{cases} y = kx + k - 1 \\ x^2 + 2y^2 = 2 \end{cases}$$
 消去 x 得: $(2k^2 + 1)x^2 + 4k(k-1)x + 2(k-1)^2 - 2 = 0$,

$$\Delta = 16k^2(k-1)^2 - 8(2k^2+1)[(k-1)^2-1] = 8(k^2+2k) > 0$$
, 解得 $k < -2$ 或 $k > 0$,

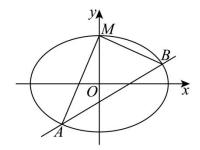
$$x_1 + x_2 = -\frac{4k^2 - 4k}{2k^2 + 1}, x_1 x_2 = \frac{2k^2 - 4k}{2k^2 + 1}, \quad k_1 = \frac{y_1 - 1}{x_1} = k + \frac{k - 2}{x_1}, k_2 = \frac{y_2 - 1}{x_2} = k + \frac{k - 2}{x_2},$$

因此
$$k_1 + k_2 = 2k + \frac{k-2}{x_1} + \frac{k-2}{x_2} = 2k + (k-2)\frac{x_1 + x_2}{x_1 x_2} = 2$$
,

当直线 AB 斜率不存在时,由 $\begin{cases} x = -1 \\ x^2 + 2y^2 = 2 \end{cases}$,得 $y = \pm \frac{\sqrt{2}}{2}$,

不妨令
$$A(-1,\frac{\sqrt{2}}{2}), B(-1,-\frac{\sqrt{2}}{2}), \quad 则 k_1 + k_2 = \frac{1-\frac{\sqrt{2}}{2}}{0-(-1)} + \frac{1-(-\frac{\sqrt{2}}{2})}{0-(-1)} = 2$$

所以 k_1 与 k_2 的和为定值 2.



26. (1)增区间为(0,1)和 $(2,+\infty)$,减区间为(1,2),极大值-1,极小值 $1-3\ln 2$;

$$(2)(-\infty,1-e]$$

【分析】(1)将a=-2代入函数解析式,利用导数判断其单调性和极值即可;

(2)问题等价于存在 $x \in (1,+\infty)$, $(a-1) \le \frac{-x}{\ln x}$,设 $h(x) = \frac{-x}{\ln x}$,利用导数求函数h(x)在 $(1,+\infty)$

上的最大值,进而可得出答案.

【详解】(1) 若
$$a = -2$$
, 则 $f(x) = -3\ln x + x - \frac{2}{x}(x > 0)$,

$$\iiint f'(x) = -\frac{3}{x} + 1 + \frac{2}{x^2} = \frac{x^2 - 3x + 2}{x^2} = \frac{(x - 1)(x - 2)}{x^2},$$

所以该函数增区间为(0,1)和 $(2,+\infty)$,减区间为(1,2),

当x=1时取得极大值-1, 当x=2时取得极小值 $1-3\ln 2$;

(2) 因为存在
$$x \in (1,+\infty)$$
, 有 $f(x) \le \frac{a}{x}$ 成立,

所以存在 $x \in (1,+\infty)$,有 $f(x) - \frac{a}{x} \le 0$ 成立,即存在 $x \in (1,+\infty)$, $(a-1)\ln x + x \le 0$.

因为 $\ln x > 0$,所以存在 $x \in (1, +\infty)$, $(a-1) \le \frac{-x}{\ln x}$,

设
$$h(x) = \frac{-x}{\ln x}$$
,其中 $x \in (1, +\infty)$,则 $h'(x) = \frac{-\ln x + 1}{(\ln x)^2}$,

因为 $x \in (1,+\infty)$, 所以 $(\ln x)^2 > 0$,

当 $-\ln x + 1 \ge 0$ 时, $h'(x) \ge 0$,

因此h(x)在(1,e]上单调递增,在 $(e,+\infty)$ 上单调递减,

所以 $h(x)_{\text{max}} = h(e) = -e$,

所以 $a-1 \le -e$, 即 $a \le 1-e$,

故 a 的取值范围为($-\infty$,1-e].