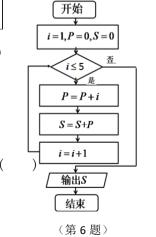
大庆中学 2016-2017 学年上学期期中考试

高三数学试题


考试时间: 120 分钟 分数: 150分 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分

第 [卷 (选择题)

- **一、选择题**(本大题共 12 小题,每小题 5 分,共 60 分)
- 1. 己知全集U = R, 集合 $A = \{x|2^x > 1\}$, $B = \{x|x^2 3x 4 > 0\}$, 则 $A \cap B = ($
- A. $\{x | x > 0\}$ B. $\{x | x < -1或 x > 0\}$ C. $\{x | x > 4\}$ D. $\{x | -1 \le x \le 4\}$
- 2. 已知复数 $\frac{2-3i}{1-i}$ (是虚数单位),它的实部和虚部的和是()
- A. 4
- B. 6
- D. 3
- 3. 二项式 $\left(\frac{x}{2} \frac{1}{3 \cdot x}\right)$ 的展开式中常数项是()
 - A. 28
- В. -7
- D. -28
- 4. " $\varphi = \frac{\pi}{4}$ " 是"函数y = sin(x + 2 φ)是偶函数"的()
- A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分又不必要条件
- 5. 一个体积为 $12\sqrt{3}$ 的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为(
- A. $6\sqrt{3}$
- B. 8

C. $8\sqrt{3}$ 侧视图 (第5题) 正视图 6. 执行如图所示的程序框图,输出的S是(A. 10 B. 15 C. 20 D. 35

- 7. 已知 S_n 是等差数列 $\{a_n\}$ 的前n项和,若 $a_2 + a_5 + a_8 = 12$,则 S_9 等于(
- A. 18
- B**. 36**
- C. 72
- D. 无法确定

$$f(x) = \begin{cases} x, & x \le 0 \\ x = 0 \end{cases}$$

 $f(x) = \begin{cases} x, & x \le 0 \\ x^2 - x, & x > 0 \end{cases}$ 8. 已知函数 g(x) = f(x) - m 有三个不同的零点,则实数 m 的取值

 $\begin{bmatrix} -\frac{1}{2},1 \end{bmatrix}$ $\begin{bmatrix} -\frac{1}{2},1 \end{bmatrix}$ $\begin{bmatrix} -\frac{1}{4},0 \end{bmatrix}$ $\begin{bmatrix} -\frac{1}{4},0 \end{bmatrix}$

范围为()

- 9. 已知直线ax + by + c = 0与圆 $0: x^2 + y^2 = 1$ 相交于 A, B 两点,且 $|AB| = \sqrt{3}$ 则 $\overrightarrow{OA} \cdot \overrightarrow{OB}$ 的值是

 - A. $-\frac{1}{2}$ B. $\frac{1}{2}$ C. $-\frac{3}{4}$ D. 0
- $10.P \neq \Delta ABC$ 所在平面内一点,若 $\overrightarrow{CB} = \lambda \overrightarrow{PA} + \overrightarrow{PB}$,其中 $\lambda \in R$,则P点一定在()
- B. AC边所在直线上 C. AB边所在直线上 D. BC边所在直线上 A. △ABC 内部

 $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \qquad f(x) = \begin{vmatrix} \sqrt{3} & \sin x \\ 1 & \cos x \end{vmatrix}$ 的图象向左平移 t(t > 0) 个

单位,所得图象对应的函数为偶函数,则 t 的最小值为(

- A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{5\pi}{6}$ D. $\frac{2\pi}{3}$

12. 在平面直角坐标系中,双曲线 $\frac{x^2}{12} - \frac{y^2}{4} = 1$ 的右焦点为 F,一条过原点 O且倾斜角为锐角的直线 l 与

双曲线 C 交于 A,B 两点。若 $\triangle FAB$ 的面识为 $8\sqrt{3}$,则直线 l 的斜率为()

- A. $\frac{2\sqrt{13}}{12}$ B. $\frac{1}{2}$ C. $\frac{1}{4}$ D. $\frac{\sqrt{7}}{7}$

第Ⅱ券(非选择题)

- 二.填空题(本大题共4小题,每小题5分,共计20分)
- 13. 若点 A(1,1) 在直线 mx + ny 2 = 0 上,其中 mn > 0,则 m + n 的最小值为 .
- 14. 己知函数 $f(x) = -x^3 + ax$ 在区间 (-1, 1) 上是增函数,则实数 a 的取值范围是

$$\begin{cases} x - 2 \le 0 \\ x + y \ge 0 \end{cases}$$

15. 不等式组 $(x-y \ge 0)$ 表示平面区域为 Ω , 在区域 Ω 内任取一点P(x,y), 则P点的坐标满足不等

式
$$x^2 + y^2 \le 2$$
 的概率为 _____.

16.给出以下命题:

- ① 双曲线 $\frac{y^2}{2} x^2 = 1$ 的渐近线方程为 $y = \pm \sqrt{2}x$;
- ② 命题 p: " $\forall x \in \mathbb{R}^+$, $\sin x + \frac{1}{\sin x} \ge 1$ " 是真命题;
- ③ 已知线性回归方程为 $\hat{y}=3+2x$, 当变量 x 增加 2 个单位, 其预报值平均增加 4 个单位;
- ④ 设随机变量 ξ 服从正态分布 N(0,1) , 若 $P(\xi > 1) = 0.2$, 则 $P(-1 < \xi < 0) = 0.6$:

则正确命题的序号为 _____. (写出所有正确命题的序号)

三.解答题(本大题共6道题,共70分)

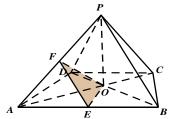
17. (12 分)数列
$$\left\{a_n\right\}$$
 的前 n 项和为 S_n , $a_1=1$, $a_{n+1}=2S_n+1$ $(n\in N^*)$, 等差数列 $\left\{b_n\right\}$ 满足 $b_3=3,b_5=9$

(1) 分别求数列 $\{a_n\}$, $\{b_n\}$ 的通项公式;

(2) 设
$$c_n = \frac{b_{n+2}}{a_{n+2}}$$
 $(n \in N^*)$, 求证 $c_{n+1} < c_n \le \frac{1}{3}$.

18.(12 分) 对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:

	201(22 为了对永久是实色的自干加重、干量: 为相对是自动的,因为对于记载:						
	日车流	$0 \le x < 5$	$5 \le x < 10$	$10 \le x < 15$	$15 \le x < 20$	$20 \le x < 25$	$x \ge 25$
	量 <i>x</i>						
Ī	频率	0.05	0.25	0.35	0.25	0.10	0


将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.

- (1) 求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
- (2) 用 X 表示在未来 3 天时间里日车流量不低于 10 万辆的天数, 求 X 的分布列和数学期望.

19. (12 分) 已知四棱锥 P-ABCD 的底面 ABCD 是等腰梯形, AB//CD 且 $AC \perp BD$ 、

AC与BD交于O, PO 上底面ABCD, PO = 2, $AB = 2CD = 2\sqrt{2}$, E、F 分别是 AB、AP 的中点.

- (1) 求证: *AC* ⊥ *EF* .
- (2) 求二面角F-OE-A的余弦值.

20.(12 分) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个焦点 F_1, F_2 和上下两个顶点 B_1, B_2 是一个边

长为 2 且 $\angle F_1B_1F_2$ 为 60°的菱形的四个顶点.

- (1) 求椭圆C的方程;
- (2)过右焦点 F_2 斜率为k($k \neq 0$)的直线 l与椭圆 C相交于 E,F 两点,A 为椭圆的右顶点,直线 AE ,AF 分别交直线 x=3 于点 M ,N ,线段 MN 的中点为 P ,记直线 PF_2 的斜率为 k' .求证: $k\cdot k'$ 为定值.

21.(12 分)设 $f(x) = \frac{(x+a)\ln x}{x+1}$, 曲线 y = f(x) 在点 (1, f(1)) 处的切线与直线 2x + y + 1 = 0 垂直. (1)求 a 的值;

- (2) 若 $\forall x \in [1,+\infty)$, $f(x) \le m(x-1)$ 恒成立,求m的范围.
- 22. (10 分) 已知动点 P,Q 都在曲线 $C:\begin{cases} x = 2\cos t, \\ y = 2\sin t \end{cases}$ (t 为参数)上,对应参数分别为 $t = \alpha$ 与 $t = 2\alpha(0)$

 $<\alpha<2\pi$), M 为 PQ 的中点.

- (1)求 M 的轨迹的参数方程;
- (2)将 M 到坐标原点的距离 d 表示为 α 的函数, 并判断 M 的轨迹是否过坐标原点.