凉山州 2016 届高中毕业班第三次诊断性检测

数学 (理科)参考答案及评分意见

一、选择题

1.C 2.A 3C 4C 5C 6D 7D 8B 9.A 10.A

二、填空题

11.x>y 12.[0,6] 13.512 14.
$$\left(-\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}\right)$$
 15. (2) (3) (4)

三、解答题

17.(1)设"取出的 3个小球中含有编号为 4的小球"为事件 A

(2) X 可能的取值为 3,4,5

$$P(X=5) = \frac{C_3^2 + C_2^1 C_3^1 + C_2^2}{C_4^3} = \frac{1}{2} \qquad10 \, \text{ fb}$$

所以随机变量 X 的分布列是

Х	3	4	5
Р	1	9	1
	20	20	2

.....12 分

18. (1) 设 $AC \cap BD = O$ 以O为空间直角坐标系原点,以 \overrightarrow{OB} 为 x^+ 轴,以 \overrightarrow{OC} 为 y^+ 轴,

以过O 点平行于 \overrightarrow{AE} 的射线为 z^+ 轴建立空间直角坐标系xOv

:: AB = AE = 1,且菱形ABCD中 $\angle ABC = 60^{\circ}$

$$\therefore F(0,\frac{1}{2},\lambda)$$

$$abla : \overrightarrow{AF} \perp \overrightarrow{BE}$$

$$\therefore \overrightarrow{AF} \cdot \overrightarrow{BE} = -\frac{1}{2} + \lambda = 0, \therefore \lambda = \frac{1}{2} \therefore F(0, \frac{1}{2}, \frac{1}{2})$$

.....4 分

$$\mathbf{X} : \overrightarrow{AF} \cdot \overrightarrow{BD} = (0.1, \frac{1}{2}) \cdot (-\sqrt{3}, 0.0) = 0$$

∴ $AF \perp BD$, $XAF \perp BE \perp BD \cap BE = B$

:. *AF* ⊥ 平面*BDE*

(2)设 $\overrightarrow{m} \perp$ 平面 $\overrightarrow{BEF}, \overrightarrow{m} = (x, y, z)$

$$\vec{m} \cdot \vec{BE} = (x, y, z) \cdot (-\frac{\sqrt{3}}{2}, -\frac{1}{2}, 1) = -\frac{\sqrt{3}}{2}x - \frac{1}{2}y + z = 0$$

$$\vec{m} \cdot \vec{BF} = (x, y, z) \cdot (-\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{1}{2}) = -\frac{\sqrt{3}}{2}x + \frac{1}{2}y + \frac{1}{2}z = 0$$

$$\therefore x = \sqrt{3}y, z = 2y, \Leftrightarrow y = 1 : \stackrel{\rightarrow}{m} = (\sqrt{3}, 1, 2)$$

.....9 分

由 (1) 知 $\vec{AF} \perp$ 平面 \vec{BDE} ,且 $\vec{AF} = (0.1, \frac{1}{2})$

设所求二面角为 θ 则有 $|\cos\theta|=\frac{\sqrt{10}}{5}$10分

又因为所求二面角为锐角......11分

19. (本题满分 12 分)

(2) 设 CA,CB 的中点分别为 M,N

$$:: O$$
点满足 $\left| \overrightarrow{OA} \right| = \left| \overrightarrow{OB} \right| = \left| \overrightarrow{OC} \right|, :: O \to \Delta ABC$ 的外心

$$\vec{CO} \cdot (\vec{CA} + \vec{CB}) = \vec{CO} \cdot \vec{CA} + \vec{CO} \cdot \vec{CB} = \left| \vec{CM} \right| \left| \vec{CA} \right| + \left| \vec{CN} \right| \left| \vec{CB} \right|$$

$$= \frac{1}{2} (a^2 + b^2) =$$

$$= \frac{1}{2} (\frac{c}{\sin C})^2 (\sin^2 A + \sin^2 B) = 8 \times \frac{2 - \cos 2A - \cos 2B}{2}$$

$$=4(2-2\cos(A+B)\cos(A-B))=4(2+\cos(A-B))$$
 (*) -----10 $\%$

$$C = \frac{\pi}{3} \Rightarrow A + B = \frac{2\pi}{3}, A - B = \frac{2\pi}{3} - 2B \in \left(-\frac{2\pi}{3}, \frac{2\pi}{3}\right)$$

由 (*): $A = B = \frac{\pi}{3}$ 时, 得最大值 12,

则 $6 < 4(2 + \cos(A - B)) \le 12$

故原式的取值范围是(6,12] -----12 分

20. (12 分)(1) 由题意得,焦点为椭圆的左焦点,即F(-c,0)

设弦与椭圆的交点为 $A(x_1,y_1),B(x_2,y_2)$,

代入椭圆方程得
$$\frac{x_1^2}{a^2} + \frac{y_1^2}{h^2} = 1$$
 …① $\frac{x_2^2}{a^2} + \frac{y_2^2}{h^2} = 1$ …②

①式-②式,得-
$$\frac{b^2}{a^2} = \frac{y_1^2 - y_2^2}{x_1^2 - x_2^2}$$
 …③

::点M 平分弦AB, 弦经过焦点,

$$\therefore \frac{x_1 + x_2}{2} = -\frac{2}{3}, \quad \frac{y_1 + y_2}{2} = \frac{1}{3}, \quad \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{1}{3}}{-\frac{2}{3} + c},$$

代入③式得,
$$-\frac{b^2}{a^2} = \frac{\frac{2}{3} \times \frac{1}{3}}{-\frac{4}{3} \times \left(-\frac{2}{3} + c\right)}$$
,即 $\frac{b^2}{a^2} = \frac{1}{6\left(c - \frac{2}{3}\right)}$,

$$\mathbb{X} : \frac{c}{a} = \frac{\sqrt{2}}{2}, \quad a^2 - b^2 = c^2, \quad \therefore c^2 = b^2 = \frac{1}{2}a^2, \quad \therefore \frac{1}{2} = \frac{1}{6\left(c - \frac{2}{3}\right)},$$

即
$$c = 1$$
, $a = \sqrt{2}$, ∴椭圆方程为 $\frac{x^2}{2} + y^2 = 1$ ····6分

(2) 设点 A 坐标为 (x_1,y_1) , 由对称性, 不妨设 $y_1 > 0$, 由 $\frac{x^2}{2b^2} + \frac{y^2}{b^2} = 1$ 得椭圆上半

部分的方程为
$$y = b\sqrt{1-\frac{x^2}{2}}$$
 , $y' = \frac{b}{2} \cdot \frac{1}{\sqrt{1-\frac{x^2}{2}}} \cdot (-x) = \frac{-bx}{2\sqrt{1-\frac{x^2}{2}}}$,

$$\therefore k_{ij} = \frac{-x_1}{2b\sqrt{1 - \frac{x_1^2}{2}}} = \frac{-x_1}{2y_1},$$

$$\therefore N$$
 点处的切线方程为 $y - y_1 = \frac{-x_1}{2y_1}(x - x_1)$ …①

过
$$F$$
 且垂直于 FN 的直线方程为 $y = -\frac{x_1 + b}{y_1}(x + b)$ …②

由①②两式,消去
$$y$$
 得 $y_1 = -\frac{x_1 + b}{y_1}(x + b) + \frac{x_1}{2y_1} \cdot (x - x_1) \cdots$ ③

其中
$$\frac{x_1^2}{2b^2} + \frac{y_1^2}{b^2} = 1$$
,代入③式,可得 $x = -2b = -\sqrt{2}a$

21. 解析: (1)
$$a = 1$$
时, $f(x) = \ln x - x(x > 0)$, $f'(x) = \frac{1}{x} - 1$,则 $f'(e) = \frac{1}{e} - 1$,
∴函数 $f(x)$ 在 $(e, 1 - e)$ 处的切线方程为 $y - (1 - e) = (\frac{1}{e} - 1)(x - e)$,即 $y = (\frac{1}{e} - 1)x$.

(2)
$$f'(x) = \begin{cases} \frac{a}{x} - 1(x > 0) \\ \frac{-1}{2\sqrt{-x}}(x < 0) \end{cases}$$
 (a > 0),列表如下

x	$(-\infty, 0)$	(0,a)	а	(<i>a</i> ,+∞)
$f^{'}(x)$	_	_	0	_
f(x)	减	增	极大值	减

设函数 f(x) 存在"K区间"是[m,n]

此时满足f(x)存在"H区间"的 α 的取值范围是 $(\frac{3}{4},1]$.

(1) 当
$$m < n \le 0$$
 时,由上表可知 $\begin{cases} \sqrt{-m} - a = n \\ \sqrt{-n} - a = m \end{cases}$,两式相减得 $\sqrt{-m} - \sqrt{-n} = n - m$,即 $\sqrt{-m} - \sqrt{-n} = (\sqrt{-m} - \sqrt{-n})(\sqrt{-m} + \sqrt{-n})$,所以 $\sqrt{-m} + \sqrt{-n} = 1$,代入 $\begin{cases} \sqrt{-m} - a = n \\ \sqrt{-n} - a = m \end{cases}$,得
$$\begin{cases} a = -n - \sqrt{-n} + 1 \\ a = -m - \sqrt{-m} + 1 \end{cases}$$
,欲使此关于 m,n 的方程组在 $m < n \le 0$ 时有解,需使 $y = a \le y = x^2 - x + 1(x \ge 0)$ 的图象有两个交点, $y = x^2 - x + 1$ 在 $[0,\frac{1}{2}]$ 是减函数,在 $(\frac{1}{2}, +\infty)$ 是增函数,且 $y_{x = \frac{1}{2}} = \frac{3}{4}$, $y_{x = 0} = 1$,所以

(2)当
$$0 < m < n \le a$$
时,由上表可知, $\left\{ \begin{matrix} a \ln m - m = m \\ a \ln n - n = n \end{matrix} \right\}$,即 $\left\{ \begin{matrix} \frac{1}{a} = \frac{\ln m}{2m} \\ \frac{1}{a} = \frac{\ln n}{2n} \end{matrix} \right\}$,

设 $g(x) = \frac{\ln x}{2x}$, $g'(x) = \frac{1 - \ln x}{2x^2}$, 当 $x \in (0, e)$ 时,g'(x) > 0,g(x) 为增函数,当 $x \in (e, +\infty)$ 时,g'(x) < 0,

g(x)为减函数,欲使关于m,n的方程 $\begin{cases} \frac{1}{a} = \frac{\ln m}{2m} \\ \frac{1}{a} = \frac{\ln n}{2m} \end{cases}$ 有两解,需 $y = \frac{1}{a}$ 与 $y = \frac{\ln x}{2x}$ 在 (0,a] 有两个交点,所以有

$$\begin{cases} a > e \\ g(a) \le \frac{1}{a} < g(e) \end{cases}, \quad \text{if } \exists e < a \le e^2.$$

所以此时满足 f(x) 存在 "H 区间" 的 a 的取值范围是 $(2e, e^2)$.

-----14 分

(3)当a < m < n时,由上表可知, $\begin{cases} a \ln m - m = n \\ a \ln n - n = m \end{cases}$, 两式相减得, $a (\ln m - \ln n) = 0$,此式不可能成立,所以此时 f(x) 不存在 "H 区间"。

综上所述, 函數 f(x) 存在 "H 区间" 的 a 的取值范围是 $(\frac{3}{4},1]$ $\bigcup (2e,e^2]$.